Search This Blog

Thursday 23 March 2017

Aurora



An aurora, sometimes referred to as a polar light or northern light, is a natural light display in the sky, predominantly seen in the high latitude 

Most auroras occur in a band known as the auroral zone, which is typically 3° to 6° wide in latitude and between 10° and 20° from the geomagnetic poles at all local times (or longitudes), most clearly seen at night against a dark sky. A region that currently displays an aurora is called the auroral oval, a band displaced towards the nightside of the Earth. Early evidence for a geomagnetic connection comes from the statistics of auroral observations. Elias Loomis (1860), and later Hermann Fritz (1881) and S. Tromholt (1882) in more detail, established that the aurora appeared mainly in the auro
ral zone. Day-to-day positions of the auroral ovals are posted on the internet.

A geomagnetic storm causes the auroral ovals (north and south) to expand, and bring the aurora to lower latitudes. It was hardly ever seen near the geographic pole, which is about 2000 km away from the magnetic pole. The instantaneous distribution of auroras ("auroral oval")[3] is slightly different, being centered about 3–5 degrees nightward of the magnetic pole, so that auroral arcs reach furthest toward the equator when the magnetic pole in question is in between the observer and the Sun. The aurora can be seen best at this time, which is called magnetic midnight.

Auroras seen within the auroral oval may be directly overhead, but from farther away they illuminate the poleward horizon as a greenish glow, or sometimes a faint red, as if the Sun were rising from an unusual direction. Auroras also occur poleward of the auroral zone as either diffuse patches or arcs, which can be sub-visual.


Causes of auroras

A quiescent solar wind flowing past the Earth’s magnetosphere steadily interacts with it and can both inject solar wind particles directly onto the geomagnetic field lines that are ‘open’, as opposed to being ‘closed’ in the opposite hemisphere, and provide diffusion through the bow shock. It can also cause particles already trapped in the radiation belts to precipitate into the atmosphere. Once particles are lost to the atmosphere from the radiation belts, under quiet conditions new ones replace them only slowly, and the loss-cone becomes depleted. In the magnetotail, however, particle trajectories seem constantly to reshuffle, probably when the particles cross the very weak magnetic field near the equator. As a result, the flow of electrons in that region is nearly the same in all directions ("isotropic"), and assures a steady supply of leaking electrons. The leakage of electrons does not leave the tail positively charged, because each leaked electron lost to the atmosphere is replaced by a low energy electron drawn upward from the ionosphere. Such replacement of "hot" electrons by "cold" ones is in complete accord with the 2nd law of thermodynamics. The complete process, which also generates an electric ring current around the Earth, is uncertain.

Colors of auroras


1. Red: At the highest altitudes, excited atomic oxygen emits at 630.0 nm (red); low concentration of atoms and lower sensitivity of eyes at this wavelength make this color visible only under more intense solar activity. The low amount of oxygen atoms and their gradually diminishing concentration is responsible for the faint appearance of the top parts of the "curtains". Scarlet, crimson, and carmine are the most often-seen hues of red for the auroras.

2. Green: At lower altitudes the more frequent collisions suppress the 630.0 nm (red) mode: rather the 557.7 nm emission (green) dominates. Fairly high concentration of atomic oxygen and higher eye sensitivity in green make green auroras the most common. The excited molecular nitrogen (atomic nitrogen being rare due to high stability of the N2 molecule) plays a role here, as it can transfer energy by collision to an oxygen atom, which then radiates it away at the green wavelength. (Red and green can also mix together to produce pink or yellow hues.) The rapid decrease of concentration of atomic oxygen below about 100 km is responsible for the abrupt-looking end of the lower edges of the curtains. Both the 557.7 and 630.0 nm wavelengths correspond to forbidden transitions of atomic oxygen, slow mechanism that is responsible for the graduality (0.7 s and 107 s respectively) of flaring and fading.

3. Blue: At yet lower altitudes, atomic oxygen is uncommon, and molecular nitrogen and ionized molecular nitrogen takes over in producing visible light emission; radiating at a large number of wavelengths in both red and blue parts of the spectrum, with 428 nm (blue) being dominant. Blue and purple emissions, typically at the lower edges of the "curtains", show up at the highest levels of solar activity. The molecular nitrogen transitions are much faster than the atomic oxygen ones.

4. Ultraviolet: Ultraviolet light from auroras (within the optical window but not visible to virtually all humans) has been observed with the requisite equipment. Ultraviolet auroras have also been seen on Mars, Jupiter and Saturn.
Infrared: Infrared light, in wavelengths that are within the optical window, is also part of many auroras.

5. Yellow and pink are a mix of red and green or blue. Other shades of red as well as orange may be seen on rare occasions; yellow-green is moderately common. As red, green, and blue are the primary colours of additive synthesis of colours, in theory practically any colour might be possible but the ones mentioned in this article comprise a virtually exhaustive list.